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What is a language model?

* An estimator of the prior probability of a token sequence (e.g., text)
* Can be thought of as a sequential predictor:

P(wy,wy, ..., wy,) = P(wy)P(wy|wy) ... P(wy|wq,..Wwn-1)

* Measures of goodness

* Cross-entropy rate between a reference distribution (test set) and the model
= average number of bits needed to encode a token

1 1
;H(W1 W) = — ;ZilogP(wiIhi)
» Perplexity (average branching factor)

PPl = e%H(Wl---Wn)



Pre-History

* Claude Shannon (1916-2001)

e Father of information theory

* Inventor of language modeling: defined the “Shannon Game”
* Let humans predict a text, one letter at a time
* Record how many times the prediction is correct (or how many guesses are needed)

* Derive an estimate for the “human entropy” of English: = 1 bit / letter (Bell System
Technical Journal, 1951)

Prediction and Entropy of Printed English
By C. E. SHANNON

(ManuscriptReceived Sept. 15, rg50)

A new method of estimating the entropy and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known. Results of
experiments in prediction are given, and some properties of an ideal predictor are
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The Ages of Language Modeling

* Pre-history

* The age of N-grams (1980-2000)

* The age of structured LMs (1990-2010)
* The age of neural LMs (2000-?)

* The age of large LMs (2015-?)




The Age of N-grams

* Assumption: only nearby tokens will influence probability of next
token

» Use statistics of N successive tokens (N-grams)
* Most popular for English word tokens: N =3
* Popularized by the IBM speech group (Jelinek 1990)

450 Language Processing for Speech Recognition

Fred Jelinek (1932-2010)
“Every time | fire a linguist our

H ”
SELF-ORGANIZED LANGUAGE MODELING FOR SPEECH RECOGNITION P erformance IMproves

by

F. Jelinek
Coatinuous Speech Recognition Group
IBM T.J.Watson Research Center
Yorktown Heights, N.Y. 10598
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Trigram models and smoothing by interpolation

3. THE INTERPOLATED LANGUAGE MODEL AND ITS QUALITY

The language model of the current speech recognizer of the IBM Yorktown research
group is based on a very simple equivalence classification: histories are equivalent if

they end in the saqne two words. Thus

n
P( ,V) = HP(‘VII |V.'-2.“"'_l) (l:)

im|

Originally we tried to estimate the basic trigram probabilities by the simple relative
frequency approach

C( Wy, Wa “v'l)

P(wy | wy, wy) = f(wy | wy, wy) = Clwrova) (13)

Pwy [ wy,wg) = g3 [y | wy, wa) + @1 /(wy | wy) + ¢ /() (14)
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N-gram Smoothing

* How do you estimate the probability of unseen N-grams?

An Empirical Study of Smoothing Techniques for

* Many approaches Language Modeling
* Good-Turing Stanley I Chen
° Kneser—Ney Joshua Goodman
* Absolute discounting \T“t“f]g
August 19¢
.

Interpolation
Interpolated Kneser-Ney
* etc.

* Extensive comparison: Chen & Goodman (1998)
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LM Training Objective (aka loss functions)

e Maximize likelihood of training data (ML training)
* Minimizes training set perplexity

* Discriminative training
* Optimize some decision based on LM

* For example, N-best rescoring of ASR hypotheses
* Max. posterior probability of correct hypothesis (maximum mutual information, MMI)
* Min. word error of the top hypothesis (MWER training)

e Typical: ML on large general training set, discriminative on small
target set



Beyond N-grams

* Problem with N-gram LMs:

* Cannot use statistics that overlap
* e.g., the number of adjacent bigrams together with the number of “skip-bigrams”
* |lgnore structure of linguistic dependencies
The dog under the tree barked
* barked is predicted by dog, it’s subject head, not by tree
* Limited range, impossible to model other long-distance dependencies
* Words tend to repeat
» Topical coherence (“child” = “school”)
* No generalization over words with similar properties
My favorites pets are dogs [cats [hamsters
Dogs[cats [ hamsters needs a lot of care




N-gram models with “add-ons”

e Cache LM: boost recently seen tokens (Kuhn 1988)

A Cache-Based Natural Language Model for Speech Recognition

@ Roland Kuhn, School of Computer Science
McGill University, Montreal
August, 1988.

* Mixture LMs: text coherence by interpolating multiple specialized
LMs (e.g., Clarkson & Robinson, 1997)

LANGUAGE MODEL ADAPTATION USING MIXTURES AND AN
EXPONENTIALLY DECAYING CACHE

P.R. Clarkson A.J. Robinson

Cambridge University Engineering Department,
Trumpington Street, Cambridge, CB2 1P7, UK.
{prci4,ajr}@eng.cam.ac.uk



Class N-gram models

* Generalize n-grams to range over words and/or class labels

My favorites pets are CLASS PETS
CLASS PETS needs a lot of care

* Class labels “expand” to word tokens
CLASS PETS = dogs (0.4) | cats (0.2) | hamsters (0.05) | ...

* Classes can be defined by hand (domain knowledge) or learned from
training data by maximizing model likelihood (Brown et., 1992)

Class-Based n-gram Models of Natural
Language

Peter F. Brown* Vincent J. Della Pietra’
Peter V. deSouza’ Jenifer C. Lai’

Robert L. Mercer’

IBM T. ]. Watson Research Center



Finite state graphs as language models

e |dea:

* Walk through a weighted finite-state network (WFST) as tokens are read
* Transition probabilities P(s’[s, history)
* Next-token probabilities are a function of the state, or of state and history
P(w | s', history)
* Hand-crafted state-based LMs are often used to encode domain

k n OW | e d ge Computer Speech and Language (1996) 10, 265-293

Stochastic automata for language modeling

Giuseppe Riccardi,7 Roberto Pieraccini and Enrico Bocchieri

AT&T Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A. email:
dsp3lrobertolenrico@research.att.com



Finite-state LMs (continued)

* N-gram LMs are a special case: previous N — 1 words are the state
* Class N-grams are a special case: states correspond to classes

* LMs represented as FSTs have an algebra (intersection, composition)

* E.g., compose the FST for class-ngrams with the FSTs for class membership

* FSTs can be determinized for efficiency (deterministic = the next token
determines the next state)

J

Computer Speech & Language NGy, O

Volume 16, Issue 1, Januar y 2002, Pages 69-88 Z:@ !
B2

B
—

Regular Article

Weighted finite-state transducers in speech
recognition

Mehryar Mohri 9, Fernando Pereira ®, Michael Riley




LMs for modeling linguistic structure

* N-grams ultimately are too limiting

 Build linguistic structure into the LM
* Grammatical/semantic structure
 Disfluencies (spontaneous speaking style)
e Conversational structure



Grammatical Structure

* Predict words using the dependency structure of sentences
* Dependency tree is constructed incrementally by a statistical model

h_{-2} h_{-1} h O
d T_{-m}
d P e T {22} T {-1} T O
heard
the dog I heard yesterday barked Figure 4: Before an adjoin operation
h’_{-1} =h_{-2} h’_0=nh_{-1}
(-1} 5 o
B L e 3} i i T

Computer Speech & Language

Volume 14, Issue 4, October 2000, Pages 283-332

Regular Article

Structured language modeling

CipAibhdRBiba ° L, Frederick Jelinek P 2 ASRU 2023 Tutorial

Figure 6: Result of adjoin-right
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LM for Disfluencies: The Cleanup model

e Spontaneous language includes disfluencies due to online sentence
planning: filled pauses (uh), repeated words, self-corrections, etc.

* Modeled with probabilistic insertion of disfluency events and editing

of N-gram context to remove (“clean up”) the extra words
I really don’t uh <REPEAT> don’t know what the big <REPEAT> the big deal is
| Y ’ —

Skip these subsequences when predicting the token after the <REPEAT> event

ICASSP 1996
STATISTICAL LANGUAGE MODELING FOR SPEECH DISFLUENCIES

Andpreas Stolcke Elizabeth Shriberg

Speech Technology and Research Laboratory
SRI International, Menlo Park, CA 94025
stolcke@speech.sri.com
ees(@speech.sri.com



Conversational Structure: Dialog Acts

Dialogue Act

Utterance

* Conversations have a two-level e
structure: ;
e Sequence of speaker labels and §
dialog acts: P(S,,U,, |S;, Uy, ...) .
* Sequences of words conditioned A
on the dialog acts P(W;|U;) A
B
Aq A; Ay
I I
Wl VVz Wn
1 ! I
<start> — U; — -+ — U; —..-— U, — <end>

e Can also model acoustic and
prosodic features A; of dialog acts

12/15/2023 ASRU 2023 Tutorial

Y ES-NO-QUESTION
ABANDONED
Y ES-ANSWER
STATEMENT
DECLARATIVE-QUESTION
Y ES-ANSWER
STATEMENT

APPRECIATION
BACKCHANNEL

APPRECIATION

Y ES-NO-QUESTION
STATEMENT

SIGNAL-NON-UNDERSTANDING
STATEMENT

So do you go to college right now?
Are yo-,
Yeah,
it's my last year [laughter].
You're a, so you're a senior now.
Yeah,
I'm working on my projects trying to graduate
[laughter].
Oh, good for you.
Yeah.
That's great,
um, is, is N C University is that, uh, State,
N C State.
What did you say?
N C State.

1 Computational Linguistics (2000)

Dialogue Act Modeling for
Automatic Tagging and Recognition
of Conversational Speech

Andreas Stolcke*

SRI International

Klaus Ries
Carnegie Mellon University and
University of Karlsruhe

Noah Coccaro
University of Colorado at Boulder

Elizabeth Shriberg

SRI International

Rebecca Bates
University of Washington

Daniel Jurafsky

University of Colorado at Boulder

Rachel Martin
Johns Hopkins University

Paul Taylor

University of Edinburgh
Marie Meteer 17
BBN Technologies

Carol Van Ess-Dykema

U.S. Department of Defense



The Age of Neural LMs

* Three distinct phases
* Feed-forward neural N-gram models
e Recurrent neural models
* Transformer-based models (and dramatic scaling)
* |nstruction-tuned models, in-context learning



Feedforward Neural LMs

 Combine three key ideas

* Encode N-gram context by (N-1)-tuples of word embeddings

* Use deep neural classifiers to predict next word token using softmax
* Learn word embeddings jointly with the word prediction task

i-th output = P(w, = i | context)

softmax
(e o . s

NIPS 2000
Q o0 )

most | computation here

tanh

A Neural Probabilistic Language Model

e Yoshua Bengio; Réjean Ducharme and Pascal Vincent
= | : computed only Département d’Informatique et Recherche Opérationnelle
for wotds in
Table 9 . Manix C 3 short list
look-up Smecssssssedossssssealioe M sasonassnseanaesd
inC

shaed puameters
across words

Centre de Recherche Mathématiques
Université de Montréal
Montréal, Québec, Canada, H3C 3J7
{bengioy,ducharme,vincentp} @iro.umontreal.ca
index for wy_p index for wy._

index for wy_,,
12/15/2023 ASRU 2023 Tutorial
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INPUT (t) OUTPUT (t)

CONTEXT (t)

Recurrent Neural Nets (RNNs) =

>

* Context vectors: feed hidden layer — —
activation back into next-state
and next-word prediction

CONTEXT (t-1)

* Allows history memory beyond
fixed window

. . INTERSPEECH 2010
* Continuous-space version of FST

* Later enhanced by

o _ .
LO n g S h O rt Te rm M emo ry gatl n g Tomds Mikolov'?, Martin Karafidr', Lukds Burget', Jan “Honza” Cernocky", Sanjeev Khudanpur?
o Sta C ke d recurre nt | aye ) 1Speech@FIT, Brno University of Technology, Czech Republic

2 Department of Electrical and Computer Engineering, Johns Hopkins University, USA
{imikolov s karafiat, burget, cernocky}@ fit.vutbr.cz, khudanpur@ijhu.edu

Recurrent neural network based language model



(Neural) Transformers

* A new NN architecture designed to learn long-range dependencies

* Based on query-key-value self-attention at multiple layers of

representation

Scaled Dot-Product Attention

l MatMul I

Mask (opt.)

12/15/2023

Output
Probabilities
Softmax
Feed
Forward
| Add & Norm |<_:
il Multi-Head
Feed Attention
Forward 7 I Nx
.
Nx Add & Norm
(_"l Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
A ’ AN AR
\.‘ v | —)
Positional A Positional
Encodi 2 b i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right

)
ASRU 2933 utorial

Figure 1: The Transformer - mo

architecture.

NIPS 2017

Attention Is All You Need

Ashish Vaswani™ Noam Shazeer* Niki Parmar* Jakob Uszkoreit™
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez* |
University of Toronto
aidan@cs.toronto.edu

Lukasz Kaiser™
Google Brain
lukaszkaiser@google.com

Llion Jones*
Google Research
1lion@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com
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BERT - Bidirectional Encoder Representations
from Transformers

* Pre-trained by

* Predicting to randomly masked portions of the input sequence
* Next-sentence prediction

* Learns contextual embeddings for input tokens and entire sequences
* Fine-tuned on a variety of NLP tasks, from [CLS] embedding

ﬁSP Mask LM Mask LM \
S * *

2 . .

BERT
| E[GLS] ” E| ] I EN H Elser “ E‘\, I I EM‘ ‘
— S e B e i g
@m Tok N [SEP] m @
Masked Sentence A Masked Sentence B

*
Unlabeled Sentence A and B Pair

Presraining

Start/End Span\

— a*—a—a—
L)) Gl (Gw]
g BERT
Lol & | (B ][ B[ & ] [&0]
— — S ey B ey B yf
Question P Paragraph

Question Answer Pair /

Fine-Tuning

arXiv 2018

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com



RescoreBERT — Discriminative LM from BERT

* Fine-tune BERT with two objectives

* regress on (distill) a masked LM pseudo-likelihood from the CLS embedding
* minimize word error over an N-best list (discriminative LM)

L e B (1)
e yp 3 e & 262
CLS BERT SEP ICASSP 2022
A a4

RESCOREBERT: DISCRIMINATIVE SPEECH RECOGNITION RESCORING WITH BERT

( hyp 1: is fishing the§ oéposite of fusion j
— Livan Xu'? Yile Gu' Jari Kolehmainen* Haidar Khan' Ankur Gandhe'
n-best [ hyp 2: is fission the Eopposite of fusion J V Ariya Rastrow ! Andreas Stolcke' Ivan Bulyko'

- 1 2 . .
[hyp 3: is fission the opposite of fashionj Amazon Alexa Al, USA  “Emory University, USA
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12x

GPT — Generative Pre-Training

* Transformer based

* Pre-train on token prediction task (left-to-right, unlike BERT)

* Supervised fine-tuning on a specific NL understanding task
* inference, question answering, semantic similarity, text classification

* Regularize with token prediction loss

* Based on final token hidden embedding

Classification | Start | Text | Extract ﬂ*{ Transformer H Linear |

Entailment | Start I Premise | Delim [Hypothesis I Extract |_—>I Transformer |——| Linear |

Text 1 | Delim | Text 2 | Extract |_——| Transformer
- Linear
Text 2 | Delim | Text 1 | Extract |——| Transformer

| Start |

Similarity

[sn |

| Start |

MuItipIeChoice| Start |

Context | Delim | Answer 1 | Extract |+| Transformer H Linear
Context | Delim | Answer 2 | Extract |—>‘ Transformer H Linear
Context | Delim | Answer N | Extract |—>‘ Transformer H Linear

Text & Position,Embed | Start |

OpenAl 2018

Improving Language Understanding
by Generative Pre-Training

Alec Radford Karthik Narasimhan Tim Salimans
OpenAl OpenAl OpenAl
alec@Qopenai.com karthikn@openai.com tim@openai.com

Ilya Sutskever
OpenAl
ilyasu@openai.com



Comparative Study of LLMs as LMs for ASR

e Some conclusions:

38.0

Perplexity
8]
b
o

w
o
o

28.0

26.0

12/15/2023

* Even with only small in-domain pre-training,
Transformer LMs > other NN LMs

* Fine-tuning LLMs on in-domain LM task helps
* Context beyond current sentence (utterance) helps
 GPT and BERT are complementary

20

40

60

30

100

120

Context Length

—

140

ADev
AEval

Model ADev AEval SWB CH
4-gram 19.9 20.2 8.6 17.0
FNN LM 19.4 19.5 79 15.8
LSTM LM 18.2 17.9 6.7 13.7
Transformer LM 18.4 18.4 6.6 13.7
F®AELHT 17.9 17.7 6.5 13.5

Table 1. %WER on AMI (ADev and AEval) and on eval2000

X 19.2 18.9 -
GPT Vv 16.5 16.0 6.3 13.1
GPT & GPT-2 / 16.0 15.6 6.1 12.7
GPT & GPT-2 @ BERT 15.9 15.5

160

180

ASRU 2021
ADAPTING GPT, GPT-2 AND BERT LANGUAGE MODELS FOR SPEECH RECOGNITION

Xianrui Zheng, Chao Zhang, Philip C. Woodland

Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ U.K.
{x2396, cz277, pcw}leng.cam.ac.uk
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Prompting LLMs

* LLMs can be fine-tuned to interpret instructions (cf. ChatGPT)
—> Prompt engineering
— In-context learning (instructing with examples)

* It is possible to prompt LLMs to perform evaluation, ranking etc. of
input texts for specific purposes

* For ASR rescoring and/or correction: see Huck’s paper & presentation

ASRU 2023

GENERATIVE SPEECH RECOGNITION ERROR CORRECTION WITH LARGE LANGUAGE
MODELS AND TASK-ACTIVATING PROMPTING

Chao-Han Huck Yang, Yile Gu, Yi-Chieh Liu, Shalini Ghosh, Ivan Bulyko, Andreas Stolcke

Amazoem LUSA



W
W

Nat

Nat

nas changed, and

nas stayed t

1€ Same

* Hand-crafted dependency structures in models have been replaced with
large “dumb” neural nets that can learn the dependencies

* But they need the right architectural features to learn the dependencies
(cf. self-attention mechanism)

* |t's still good to understand linguistic phenomena so that we know what
aspects of the data to encode (context, speaker info) for learning

* Training on large mismatched data, then fine-tuning (or interpolating) with
in-domain data is still good.

* Ensembling of different architectures and/or training data sets still a good
idea



Thank you!

andreas.stolcke@uniphore.com
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